解析学
はじめに この記事では『』の求め方を解説します。 ロピタルの定理、第一回目になります。 この続きの問もありますので、見終わったら記事の一番下から次に進んでください。 極限の計算『は?』 を求める。とおくとである。ここで、とおけば、のときで、(※最…
はじめに≫数学記事まとめはこちら!確認しよう!今回、ガウス関数の積分を使用する。前回の記事の続きになるわけだが、もしまだ見てないならそちらから見ておくことを勧める。dodgson.hatenablog.com↑先に見ておこう。ガウス関数のフーリエ変換ガウス関数、…
はじめに※間違い、ご指摘などがあれば(https://twitter.com/Dodgson_007)のDMにご連絡ください。 お問い合わせフォームからもどうぞ(https://dodgson.hatenablog.com/about) 解き方 あまりにも有名なので、『できるだけ短く』を意識して進めていきます。…
はじめに ここでは合成関数の連続性の証明をします。 前回の記事の続きなので、まだならそちらからどうぞ。 dodgson.hatenablog.com ※今回は少し難易度高めです。 合成関数の連続性の証明をする前に確認 合成関数の連続性ということで、 がで連続 がで連続 …
はじめに ここでは【ε-N論法】極限の一意性の証明をします。 証明したいもの《極限の一意性》 では早速証明を始めよう。 ※スマホから見ている人は横スクロールしながら読み進めていってほしい。 ・数列が収束すれば、その極限は一つである。《極限の一意性》…
はじめに ここでは【ε-N論法】はさみうちの原理の証明をします。 前回↓の続きです。まだ見てない方は①からどうぞ。 dodgson.hatenablog.com 証明 ・に対し、を満たし、 ,ならば、である。 この証明だ。 準備:まず示したいのは、 ]である。 このように方針を…
はじめに ここでは【ε-N論法】収束する数列は有界であることの証明をします。 収束する数列は有界であることの証明 より、 が成立する。 とおくと、 となる。 (※スマホは横にスクロール↓) とおくと、 となるので有界。 結論:収束する数列は有界。 以上。 …
はじめに この記事ではカテナリー(懸垂線)とアステロイド(星芒形)の曲線の長さを求めます。 【弧長】カテナリー(懸垂線)とアステロイド(星芒形)の曲線の長さを求める 弧長の長さを求める。 弧長: 図は以下を参照。 ※左の端点はで、右の端点は。。 …
ここではシュワルツの不等式の証明をします。 動画でも解説していますので、よければそちらも見てください。 シュワルツの不等式 動画で解説(YouTube) 証明1 証明2 大学生必見! おわりに&おすすめ シュワルツの不等式 をシュワルツの不等式と言います…
ここでは、を微分するとどうなるか確認します。 問題 解き方 大学生必見! おわりに&おすすめ 問題 を微分しよう。 解き方 対数微分法を使います。とおきます。次に対数を取ります。 両辺を微分します。 両辺にを掛け、元に戻します。 よって求める答えは、…
はじめに 解 大学生必見! おわりに&おすすめ ≫数学記事まとめはこちら はじめに ここではの積分を解く。 高校生でもできるので挑戦してみよう。 解 を求めたい。とおくと、 つまり、である。よって、(※スマホは右にスクロールして見よう) おわり。 すご…
はじめに 証明 大学生必見! おすすめ記事 ≫数学記事まとめはこちら はじめに ここでは、となることの証明をします。 言うまでも無いですが、は任意定数です。 レベルとしては高校数学。 なので、大学生は復習でやってみよう。証明は意外とできない人も多い…
はじめに ここではの積分をします。 確認までに、前回、積分公式の一つを解説した。 今回はこれを使うので、まだ見ていないなら先にどうぞ。 dodgson.hatenablog.com の積分 早速やっていく。まず、 これを①とする。※証明は前回の記事。であるので、とおくと…
はじめに の積分 大学生必見! おわりに&おすすめ はじめに ここではの積分をする。 の積分 が邪魔なので 部分積分において とすればよい。よって、 おわり。 大学生必見! おすすめ紹介!大学生の皆さん必見! 教科書や参考書、日用品の買い物は ハピタス…
はじめに ここではとの積分をする。 ついでに次の記事での積分もするので、よければそちらもどうぞ。 との積分 と置くと、 よって、部分積分をして と置くと、より なので、 (スマホは右にscroll) したがって の方はこれで終わり。 の場合もやり方は同じで…
はじめに ここではの積分をする。 前回の続きで、まだの方はそちらから見てほしい。 dodgson.hatenablog.com ↑この記事です。 の積分 前回の の積分のやり方と基本同じなので、一部省略する。とおくと、 なので、部分積分をしておわり。前回の記事見ていれば…
はじめに ここではとの積分をする。 逆数の方であって、逆関数とは違うので注意。(ややこしい) 逆関数の方は下の記事でやったので、ついでに見ておこう。 dodgson.hatenablog.com との積分 置換積分の方でやります。 他にもやり方はありますが、計算がしん…
はじめに 使う公式 三倍角の公式を求める 大学生必見! おすすめ記事 はじめに ここではと、それぞれから三倍角の公式を導くやり方を解説します。 加法定理なしで求めてみるので、加法定理を忘れた場合でもOKです。 使う公式 オイラーの公式 です。 『はじめ…
はじめに ド・モアブルの定理とは? 数学的帰納法での証明 大学生必見! おすすめ記事 はじめに ここでは、ド・モアブルの定理(公式)の数学的帰納法の証明をします。 ※スマホから見ている場合は、長い数式は横にスライドして見ることができます。 ド・モア…
ここでは、シュワルツの不等式(積分)の証明をする。≫数学記事まとめはこちら シュワルツの不等式とは?(積分) でが連続であるとき 上の不等式である。見るだけでめんどうな気がしてならない不等式だが、証明せよと言われたら難しい。自力で考えていって…
はじめに ここでは関数の連続性、\( \sin x\)の連続を証明します。 関数の連続性の確認 \(f(x)\)が\(x=a\)で連続であるとする。(\(a \in I\)) つまり、\(\displaystyle\lim _{x\rightarrow a}f\left( x\right) =f\left( a\right)\)が成立する。これは、 \(…
ここでは、不等式の問題練習をします。 動画でも解説していますので、よければそちらも見て下さい。【問題】 を示せ。ただし、とする。 動画解説(YouTube) 解説 紹介 おわりに&おすすめ 動画解説(YouTube) 準備中…※よければチャンネル登録お願いします…
ここでは、指数関数・対数関数の問題練習をします。 動画でも解説していますので、よければそちらも見て下さい。【問題】 ①の桁数を求めましょう。 ②は小数第何位に初めて0でない数となるか求めましょう。 ただし、とします。【追記】常用対数の練習となりま…
ここでは、指数関数・対数関数の問題練習をします。 動画でも解説していますので、よければそちらも見て下さい。 問題 動画解説(YouTube) 解答 紹介 おわりに&おすすめ 問題 の大小関係を調べましょう。 動画解説(YouTube) youtu.be※よければチャンネル…
ここでは、ε-N論法&ε-δ論法の数列の極限に関する確認をする。 数列の収束と発散 全称記号と存在記号について 例:はさみうちの原理 証明 よく見る例で練習 証明① 証明② 証明③ 極限の一意性 証明 大学生必見! おわりに&おすすめ 数列の収束と発散 を数列と…
ここでは、極限の問題練習をします。 動画でも解説していますので、よければそちらも見て下さい。 問題 動画解説(YouTube) 解き方 紹介 おわりに&おすすめ 問題 を求めよう。 動画解説(YouTube) youtu.be※よければチャンネル登録お願いします。チャンネ…
ここでは、極限の問題練習をします。 動画でも解説していますので、よければそちらも見て下さい。 問題 動画解説(YouTube) 解答解説 ロピタルの定理の話 紹介 おわりに&おすすめ 問題 を求めよう。 動画解説(YouTube) youtu.be※よければチャンネル登録…
ここでは、積分の問題練習をします。 動画でも解説していますので、よければそちらも見て下さい。 問題 動画解説(YouTube) 解き方 紹介 おわりに&おすすめ 問題 を求めよう。 動画解説(YouTube) youtu.be※よければチャンネル登録お願いします。チャンネ…
ここでは、極限の問題練習をします。 動画でも解説していますので、よければそちらも見て下さい。 問題 動画解説(YouTube) 解き方 紹介 おわりに&おすすめ 問題 のとき、 を求めよう。 動画解説(YouTube) - YouTube※よければチャンネル登録お願いします…
ここでは、極限の問題練習をします。 動画でも解説していますので、よければそちらも見て下さい。 問題 動画解説(YouTube) 解き方 紹介 おわりに&おすすめ 問題 を求めよう。 動画解説(YouTube) - YouTube※よければチャンネル登録お願いします。チャン…